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Abstract. An expression forintralayer resistivity in a double-layer system due to Coulomb
scattering between current carriers is derived. It is shown that Coulomb interlayer carrier–
carrier interaction imposes limits on available mobilitieswithin each layer. The limits become
restrictive for small layer separations and low carrier concentrations when short-range Coulombic
correlations significantly modify interactions in the system, in particular for electron–hole double
layers at temperatures corresponding to the Fermi energy. In some cases these intrinsic limits for
the mobilities may be as low as 3×104 cm2 V−1 s−1 for a GaAs/GaAlAs/GaAs heterostructure
system—possibly one of the reasons for low mobilities in multilayer systems.

Quasi-two-dimensional electron and electron–hole systems (single layer, multilayer, etc)
have become prominent in recent years in condensed-matter physics both because of their
technological importance and as a testing ground for many-body theories. The single
most important reason for this is the very high carrier mobilities achievable in single-
layer GaAs/GaAlAs heterostructure systems. High mobilities (i.e. low scattering rates)
allow the observation of highly correlated electronic states, like the fractional quantum Hall
effect in high magnetic fields [1] or the Wigner crystallization predicted for extremely low
carrier concentrations [2]. Addition of a second layer with a potential barrier thick enough
to prevent tunnelling [3] enhances, in principle, carrier–carrier correlations [4], possibly
producing the Wigner crystallization at higher densities and leading to novel correlated
ground states, like charge-density waves [5] and a superfluid state resulting from electron–
hole attraction in double-layer electron–hole systems [6]. Experimentally, however, it is
much more difficult to achieve very high mobilities in multilayer systems. It is important
to ask whether the limits on mobilities in such systems are merely of technological nature
or whether there exist more fundamental limits as well. We show in this article that recent
developments in the understanding of transport in double layers [7–11] allow us to place
important intrinsic limitations on mobilities.

Transport properties of multilayer systems are directly affected by carrier–carrier
Coulomb interactions—in contrast to normal phases in single layers (in zero magnetic field)
where these interactions affect transport only indirectly through the screening of potentials
responsible for scattering. A good example is given by the interlayer Coulomb drag when
electric current flowing in one layer of a double-layer system may drag along the carriers
in the other layer. The drag force is due to the momentum and energy exchange between
the layers mediated by elementary single-particle and collective excitations. To probe the
interactions responsible for this effect one disallows the current flow in one of the layers; the
resulting charge polarization produces an electrostatic field which compensates for the drag
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force. The ratio of the field to the current density in the drag layer, called the transresistivity,
is a direct measure of the interactions responsible for the drag [7–11].

Mobilities in a single layer are affected by scattering of carriers due to imperfections
or impurities. In the double-layer system, however, there is an additional interaction of
carriers in one layer with those in the other one. The effective mobility in the first layer is
directly affected by the carrier–carrier interlayer interaction and may be written as

1

µeff
1

= 1

µs
1

+ 1

µC
1

(1)

where 1/µs
1 and 1/µC

1 are due to the presence of fixed scatterers (impurities, etc) and the
presence of carriers in the second layer, respectively.

A notable implication of equation (1) is that the mobility in the drag layer is limited
by the Coulomb interactions with the carriers in the second layer. As the quality of the
sample improves and disorder scattering becomes less effective, the mobility measured in
the lth layer increases until it reaches its highest possible value,µC

l , set up by the interlayer
interactions. This limit depends on the concentration of carriers in both layers and also on
the temperature of the sample.

Experimental separation of the interlayer Coulomb scattering contribution to the
intralayer mobility is difficult. Intuitively, it should be related to the strength of the
interlayer Coulomb drag which is much easier to measure. The first experiments on
Coulomb drag were performed on electron–electron double-layer systems with relatively
high concentrations of carriers [7]. The measured Coulomb drag was small, giving rise
to a generally held opinion that the interlayer Coulomb scattering is always small, so the
intralayer mobility is always dominated by impurity (or phonon, etc) scattering, i.e. that,
practically, the interlayer Coulomb scattering does not impose limits on intralayer mobilities
measured in real samples. However, recent experiments on electron–hole systems with low
concentrations of carriers [8] show that correlations alone can boost Coulomb drag by an
order of magnitude [11, 12]. Also, larger effective masses of holes and higher temperatures
make interlayer Coulomb scattering more effective. Therefore, the question of whether the
interlayer Coulomb-scattering-dominated regime of intralayer transport can be reached in
real samples needs to be addressed.

Rather than deriving from first principles an expression for the intralayer mobilityµC
1 due

to interlayer Coulomb scattering, we use simple physical arguments to relate it rigorously
to the transresistivity which can be measured independently and has already been calculated
theoretically [7–12]. If a currentjl flows in the lth layer of a double-layer system then a
net friction forceF fric

l = −(ml/elτ
s
l )jl acts on all charge carriers in it (electrons or holes

with effective massml and chargeel) as a result of scattering, described by the effective
relaxation timeτ s

l , due to disorder, impurities, imperfections, etc. All forces acting on the
gas in the layer must balance in a steady state so, forl = 1, we get

n1e1E1 − m1

e1τ
s
1

j1 + F
drag
12 = 0 (2)

wheren1 and E1 are, respectively, the carrier concentration and the electric field in this
layer, andF drag

12 is the drag force experienced by the gas in the first layer due to Coulombic
interactions with the charge carriers in the second layer. Adding equation (2) to a similar
equation forl = 2, using the third Newton’s law:F drag

12 = −F
drag
21 , employing the relations

El =
2∑

l′=1

Rll′jl′ (3)
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where Rll′ = Rl′l are the components of the resistivity of the double-layer system, and
observing that currents can be set up independently in each layer, we obtain

R11 = 1

n1eµ
s
1

− n2e2

n1e1
R21. (4)

Here,e = |el| andµs
l = eτ s

l /ml is the mobility in thelth layer due to the disorder scattering,
i.e. the mobility measured in the isolated layer. The second term in equation (4) (taken with
its sign) is always positive because, as seen from equation (3),R21 is positive for the
electron–hole double-layer system and negative for the electron–electron system. A similar
relation is obtained betweenR22 and R12. In the usual experimental set-up the current is
allowed to flow through one layer only, sayl = 1 (termed the drag layer), while the other
layer is stopped, i.e.j2 = 0. Defining aneffectivecarrier mobility in the drag layer in terms
of its measured resistivity, 1/µeff

1 = n1eR11, and the residual mobility due to the presence
of carriers in the second layer:

1

µC
1

= en2|R21| (5)

one obtains equation (1) from equation (4).
Equation (4) relates the resistivity measured in each of the layers to the transresistivity

R21 which can be measured independently [7, 8]. Theoretical expressions forR21 were
derived repeatedly in the past using microscopic models [7–11]. We use here the expression
which includes electron–electron correlations [11]. By substituting it into equation (4) we
can write outall components of the resistivity:
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nlelµ
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l
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cosh(βh̄ω) − 1
. (6)

The microscopic derivation of both diagonal and off-diagonal components ofRll′ based on
a general linear response theory for two-component fermion systems [12] is consistent with
the result given in equation (6). Here,β = 1/kBT , χl(q, ω) is the Lindhardt susceptibility
function for a two-dimensional gas in thelth layer, andε(q, ω) is the dielectric function
appropriate for the double-layer system [9–12, 15] which screens the effective Coulomb
interactionV eff

12 (q) between the carriers on both sides of the potential barrier separating
the layers. We are interested here in the intrinsic limit of mobility in the zero-disorder
limit; therefore, the disorder is not included in the second term of equation (6), describing
the Coulomb scattering contribution. Note that even in the finite-disorder case this is a
good approximation, since although in samples experimentally investigated so far the first
term is larger than the second term, the influence of disorder on the transresistivity is
negligible [10, 11].

The dielectric function in equation (6) depends on both interlayer,V eff
12 (q), and intralayer,

V eff
ll (q), effective Coulomb interactions. Explicit expressions for the dielectric function and

the effective interactions were given and their physical role was discussed in [11] where
it was also shown that short-range Coulombic correlations are important in this problem
since they can changeR21 by almost an order of magnitude. The correlations are taken into
account in all effective interactions through the static local field corrections calculated using
the Singwi–Tosi–Land–Sjölander method [13] generalized for two-component plasmas [14]
and double-layer systems in particular [15]. This approach has been extremely successful in
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describing experimentally measured transresistance in electron–electron and electron–hole
double-layer systems [11].

Figure 1. The electron (a) and hole (b) concentration dependence of the upper limit of electron
mobility in the electron–hole double-layer system with a stopped hole layer. The thickness of
each layer isa = 100 Å and the distance between their centres isd = 150 Å (open symbols)
andd = 300 Å (full symbols). Temperatures:T = 4 K (circles) andT = 40 K (squares).

In figure 1 the concentration dependence of the upper mobility limits in the electron
drag layer are shown for electron–hole double-layer systems for two temperatures and two
values of the barrier width separating the gases and for the carrier concentrations typically
available in these systems [8]. The calculations were done using equation (6) with disorder
scattering set equal to zero. Similar graphs for the hole drag layer upper mobility limits in
these systems can be obtained from the relationµC

h = (nh/ne)µ
C
e .

Two points are worth noting. First, the electron mobility limit due to the Coulomb drag
increases with increasing electron concentration in the drag layer (figure 1(a)). Secondly,
at lower temperatures, the mobility increases also with increasing concentration of carriers
in the stopped layer (figure 1(b)), in contrast to the picture according to which they might
act as individual ‘scatterers’ for the carriers in the drag layer. At a microscopic level,
the interlayer scattering of the carriers in the drag layer is a many-body effect involving
particle-density fluctuations in both layers. Thermally excited single-particle and collective
excitations in the drag layer change their momentum and give up their energy by promoting
similar excitations in the other layer by means of the across-the-barrier Coulomb interaction
between the carriers. We note that, similarly to the transresistivity case [11], short-range
Coulombic correlations significantly affect the results presented in figure 1. Without them
the mobility limits would be higher by a factor of 5 to 10.

The lowest carrier concentrations used in the present calculations, 2× 1010 cm−2,
correspond to the lowest experimental carrier densities in mobile electron–hole samples
of [8]. At still lower concentrations in the stopped layer, say, the carriers in it may undergo
a localization on defects and act as Coulomb scattering centres for the carriers in the drag
layer. In such a case the theory leading to equation (6) no longer applies and the stopped
layer concentration dependence of the upper mobility limit in the drag layer is different to
that in figure 1(b).
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Figure 2. The temperature dependence of the upper limit for the carrier mobility in an electron–
hole double-layer system ford = 150 Å (solid line) and 300Å (dashed line).

The thermally activated nature of the scattering process is evident in the temperature
dependence of the drag layer mobility limit seen in figure 2 for equal carrier concentrations
in both layers (note that in this caseµC

h = µC
e ≡ µC). As T → 0 the interlayer interactions

do not impose any upper limit on the mobility (i.e.µC → ∞), because with no density
fluctuations present both gases are uniform and cannot exchange energy or momentum.
The upper mobility limit sets up quickly as the temperature increases above the hole Fermi
temperature (≈3.1 K in this example), reaches its minimum, and increases rather slowly
with further temperature rise because above the Fermi temperatures of both subsystems all
available elementary excitations are already contributing to the interlayer scattering.

Figure 3. The stopped layer carrier concentration dependence of the upper limit for the electron
mobility in the electron–electron double-layer system fora = 100 Å. Remaining parameters:
d = 165 Å (open symbols);d = 300 Å (full symbols); T = 4 K (circles);T = 40 K (squares).

The drag layer (l = 1) upper mobility limit versus the concentration in the stopped layer
(l = 2) in the electron–electron double-layer system is shown in figure 3. The effective
mass of carriers filling both layers is the same, so the upper mobility limit dependence upon
the carrier concentration in the drag layer (analogous to figure 1(a)) can be obtained by
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multiplying the values in figure 3 byn2/n1 and then interchangingn1 andn2 in the graph.
Comparison of figure 3 with figure 1(b) indicates that the mobility limitation due to the
Coulomb drag is not as severe in the electron–electron double-layer system as it is in the
electron–hole double-layer system. The main reason for this is the lower effective mass of
electrons and less pronounced role played in the electron–electron system by the short-range
Coulombic correlations in the across-the-barrier energy and momentum exchange [11].

In conclusion, we have examined the Coulomb carrier–carrier scattering in double-layer
systems and found that it imposes upper limits on carrier mobilities in each layer. These
limits are more severe in the electron–hole systems than they are in the electron–electron
systems and are more important at low carrier concentrations and small layer separations.
They might be one of the reasons for high-mobility double-layer samples being difficult to
obtain.
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Gortel Z W and Świerkowski L 1996Surf. Sci.at press

[7] Gramila T J, Eisenstein J P, MacDonald A H, Pfeiffer L N and West K W 1991Phys. Rev. Lett.66 1216;
1993Phys. Rev.B 47 12 957; 1994PhysicaB 197 442

[8] Sivan U, Solomon P M and Shtrikman H 1992Phys. Rev. Lett.68 1196
[9] Tso H C, Vasilopoulos P and Peeters F M 1992Phys. Rev. Lett.68 2516; 1993Phys. Rev. Lett.70 2146

Jauho A-P and Smith H 1993Phys. Rev.B 47 4420
Flensberg K and Hu B Y-K 1994Phys. Rev. Lett.73 3572
Kamenev A and Yuval O 1995Phys. Rev.B 52 7516
Flensberg K, Hu B Y-K, Jauho A-P and Kinaret J M 1995Phys. Rev.B 52 14 761
Flensberg K and Hu B Y-K 1995Phys. Rev.B 52 14 796

[10] Zheng L and MacDonald A H 1993Phys. Rev.B 48 8203
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